【线性代数】标准正交矩阵与Gram-Schmidt正交化

1、标准正交矩阵

    假设矩阵Q有列向量q1,q2,...,qn表示,且其列向量满足下式:

    


    

若Q为方阵,由上面的式子则有

     

我们举例说明上述概念:

     

2、标准正交矩阵的好处

    上面我们介绍了标准正交矩阵,那么标准正交矩阵的用处在哪? 下面以两方面来说明标准正交矩阵的用处:

求解Ax=b

    在前面文章 《正交投影》中,有下式:

当矩阵A为标准正交矩阵Q时,由于正交矩阵与其转置的乘积为单位矩阵,则上式可以转化为:


可以发现,求x时不需要矩阵Q的逆,只需要知道转置即可,这样简化了计算。

求解投影矩阵

    在前面文章 《正交投影》中,投影矩阵的通式可以表示为:

当矩阵A为标准正交矩阵Q时,由于正交矩阵与其转置的乘积为单位矩阵,则上式可以转化为:


这样就将投影矩阵简单化了。

3、Gram-Schmidt正交化

    任何复杂问题的求解都可以从简单的问题出发。聪明的数学家不会羞于考虑小问题,因为当最简单的情况弄得明明白白时,一般的形式就容易理解了。并且,简单的情况不仅帮我们发现一般的公式,而且还提供了一种便利的核查方法,看看我们是否犯下了愚蠢的错误。下面我们就从简单的二维情况讨论:

二维情况

    假设原来的矩阵为[a,b],a,b为线性无关的二维向量,下面我们通过Gram-Schmidt正交化使得矩阵A为标准正交矩阵:
    假设正交化后的矩阵为Q=[A,B],我们可以令A=a,那么我们的目的根据AB=I来求B。如下面的二维情况所示,B的方向与A成90度。图中还表明,B可以表示为b向量与b向量在a上的投影的误差向量。由《正交投影》中的结论可知,有如下关系成立:

三维情况

     假设原来的矩阵为[a,b,c],a,b,c为线性无关的二维向量,正交化后的矩阵为Q=[A,B,C],我们可以令A=a,则可以根据二维情况得到如下猜想:

上式显然满足AB=0,AC=0,BC=0。

下面我们用实例说明正交化的过程:
假设矩阵为[a,b]

则由二维情况的结论可知:


把具体数值代入得:


经过归一化得:


Q即是我们经过正交化后的正交矩阵。

原文:http://blog.csdn.net/tengweitw/article/details/41775545

作者:nineheadedbird




©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页